Efficiently Mining Frequent Subpaths

نویسنده

  • Sumanta Guha
چکیده

The problem considered is that of finding frequent subpaths of a database of paths in a fixed undirected graph. This problem arises in applications such as predicting congestion in network traffic. An algorithm based on Apriori, called AFS, is developed, but with significantly improved efficiency through exploiting the underlying graph structure, which makes AFS feasible for practical input path sizes. It is also proved that a natural generalization of the frequent subpaths problem is not amenable to any solution quicker than Apriori.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Frequent Subpaths in a Graph

The problem considered is that of finding frequent subpaths of a database of paths in a fixed undirected graph. This problem arises in applications such as predicting congestion in network and vehicular traffic. An algorithm, called AFS, based on the classic frequent itemset mining algorithm Apriori is developed, but with significantly improved efficiency over Apriori from exponential in transa...

متن کامل

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining over Stream Data

Recently, frequent itemsets mining over data streams attracted much attention. However, mining closed itemsets from data stream has not been well addressed. The main difficulty lies in its high complexity of maintenance aroused by the exact model definition of closed itemsets and the dynamic changing of data streams. In data stream scenario, it is sufficient to mining only approximated frequent...

متن کامل

Chapter 17 FREQUENT SET MINING

Frequent sets lie at the basis of many Data Mining algorithms. As a result, hundreds of algorithms have been proposed in order to solve the frequent set mining problem. In this chapter, we attempt to survey the most successful algorithms and techniques that try to solve this problem efficiently.

متن کامل

Smart frequent itemsets mining algorithm based on FP-tree and DIFFset data structures

Association rule data mining is an important technique for finding important relationships in large datasets. Several frequent itemsets mining techniques have been proposed using a prefix-tree structure, FP-tree, a compressed data structure for database representation. The DIFFset data structure has also been shown to significantly reduce the run time and memory utilization of some data mining ...

متن کامل

Frequent Pattern Mining in Attributed Trees

Frequent pattern mining is an important data mining task with a broad range of applications. Initially focused on the discovery of frequent itemsets, studies were extended to mine structural forms like sequences, trees or graphs. In this paper, we introduce a new data mining method that consists in mining new kind of patterns in a collection of attributed trees (atrees). Attributed trees are tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009